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A toy model
The Kitaev chain

The simplest topological model.

1. Chain of fermions. Chem pot + hopping + superconducting pairing.

2. Majorana representation. γA and γB are Majorana operators.

3. Hamiltonian in terms of Majorana operators. Cases:
– ∆ = t = 0: trivial. Just a chain of decoupled fermions.
– t = ∆, µ = 0. Long-range coupling. Same site decoupled. Edge states disappear

from the hamiltonian!

4. Unpaired Majorana follow non-Abelian statistics. When two MBS interact, the final state
of the system depends on the order of the exchanges.
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A toy model
The Lutchyn-Oreg model
The full-shell nanowire

Kitaev chain energy dispersion
Let’s consider periodic boundary conditions and solve the eigenvalue problem in
momentum space:

pa
− 𝜋 − 𝜋/2 0 𝜋/2 𝜋

E 0 𝜇< − 2t

a b c d

I Two distinct phases characterized by a Z2 invariant, M = (−1)ν .
I ν is the number of times the energy gap closes in the Brillouin zone.
I M = 1 ⇒ no unpaired MZM. M = −1 ⇒ unpaired MZM (bulk-boundary

correspondance).
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A toy model
Kitaev chain energy dispersion

• We distinguish two regimes separated by a gap closing.

• In the open boundary conditions, they correspond to the presence or absence of MZM.

• It is an example of BDI topology.
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I M = 1 ⇒ no unpaired MZM. M = −1 ⇒ unpaired MZM (bulk-boundary
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• We distinguish two regimes separated by a gap closing.
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We need a p−wave superconductor!

I The superconducting pairing term in the Kitaev chain is spinless:
∆
(

cjcj+1 + c†j+1c†j
)

.

I p-wave is very rare in nature. We need to engineer it.
I Fu and Kane: s−wave pairing behaves as p−wave when projected onto the basis

of helical electrons.
I Lutchyn and Oreg: proximitize semiconductors with strong spin-orbit coupling.
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• SOC breaks spin degeneracy and shifts bands in energy and k-space.

• Zeeman field breaks time-reversal symmetry and splits bands in energy.

• When µ in the Zeeman gap, there is only one band with spin locked to momentum, i.e.
helical.

• Add SC ⇒ two gaps. One of them, ∆1, can close and induce a topological transition.
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• ∆1 closes at k = 0 for VZ = VZc .

• Disadvantage: need high magnetic fields and high g .

• High magnetic fields kill SC.
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More than just MBS
The CdGM analog states

• Each minimum in the bands corresponds to a van Hove peak in the LDOS.

• These Van Hove peaks are CdGM analogs.

• LP switched off for clarity.

• Turn on and see LDOS against flux.
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More than just MBS
LDOS vs. flux

• LP effect turned on.

• Left: LDOS cut for white line in LDOS v flux.

• Lots of states over MZM.

• Taking only mJ = 0, minigap is huge.
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Towards a realistic model
The tubular-core model

• Increase w and keep ”equivalent” parameters.

• Notice DP. It shifts towards higher fluxes.

• Leading to a shifted gap and skewed CdGM analogs.

• Sometimes there is true topological minigap! Why? ⇒ competition between MBS and
CdGMs.
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Towards a realistic model
The modified hollow-core model

• PD have the same shape for all w.

• Up to w = 0.5R , they can be fitted to a w → 0 model (orange in w = 20 nm).
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Role of the radial modes
A solid core simulation: first radial mode

• Solid-core: boundary conditions change.

• Realistic simulation: conduction band-bending.

• If all states in first radial mode, similar to tubular-core.
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A solid core simulation: second radial mode
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I When the second radial mode is occupied, the ZEP expands over the full lobe, but
CdGMs cover it.

I The tubular-core model is not a good approximation anymore.
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• MBS second radial mode is the first to enter ⇒ extends through all first lobe.

• But all mJ in first radial mode enter before.

• LDOS is covered with CdGM.

• No true topological protection anywhere.

• Intuition: larger radial modes have smaller average radius.
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Phase Diagram
More radial modes in the Phase Diagram

• At 〈α〉 = 0, singularity. No topology possible.

• Begins at Umin = −1 meV bc. mean α is not well defined at Umin = 0.
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Topological invariant

• NM calculated with Pfaffian.

• Pfaffian is a generalization of the determinant for antisymmetric matrices.
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Where is topology in the Hamiltonian?

Hamiltonian

〈mJ |H|mJ〉 = HK ,mJ τz + VZσz + AmJ + CmJσzτz + αkzσyτz

I σi , τi Pauli matrices in spin and electron-hole space.
I HK ,mJ is the kinetic term (+ effective chemical potential).
I VZ is the effective Zeeman term.
I AmJ and CmJ is the coupling of Jz with the magnetic field and the spin.
I αkzσyτz allows topological transitions when mJ = 0.
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The topological transition mechanism
Where is topology in the Hamiltonian?

• This hamiltonain is for the MHC, but the structure is valid for the SCM.

• HK contains µ, the effective chemical potential renormalized by α.

• VZ is the effective Zeeman term shown before.

• αkzσyτz is the term that provides helical bands.
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Topology through mode-mixing

I A ±mJ crossing is parabolic ε ∼ k2
z .

I It can be shown that any mode-mixing term M ∼ I, σz , τz :

〈mJ |M|−mJ〉 ∼ αkz .

I ⇒ mode-mixing acts as p−wave pairing between mJ ↔ −mJ states.
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The topological transition mechanism
Topology through mode-mixing

• Bands have to cross at kz = 0.

• Demonstration only requires diagonality in spin and electron-hole space.

• Actual size of the minigaps depend on the model.
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A nanowire with generic disorder
Effects on the LDOS

• mJ is tracked even if it’s not well defined just by continuity of the CdGMs.

• Smooth model ensures non-divergent second derivative.

• Non-smooth model ensures only non-divergent first derivative.
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I Non-smooth distortion ∼ defects in the nanowire profile + atomic size defects.
I Topological minigaps are larger because harmonic pre-factors can be larger.
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A nanowire with generic disorder
Effects on the LDOS

• Remind MZM thickness is artificial.
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Phase Diagram with disorder
Tubular-core

• The mode-mixing PD is just a continuation of the original Lutchyn-Oreg PD.

• No need for islands. All CdGM crossings are now gapped.

• However, minigaps depend on the disorder model.
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Phase Diagram with disorder
Solid-core

• Even if there is topology in the second lobe, minigaps there are probably quite small.

• Advantage of mode-mixing: topology is not confined to a region of the phase-diagram.
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I In pristine full-shell hybrid nanowires:
1. Majorana zero modes appear at odd LP lobes coexist with CdGM analog states.
2. MZMs are generally topologically unprotected except for small islands in parameter

space.
3. Tubular-core nanowires are a good experimental candidate for protected MZMs.
4. The solid-core phenomenology is more complex and depends on the radial modes.

I Adding mode-mixing:
5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.
6. Generic disorder generates new MZMs and opens topological minigaps.
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1. Majorana zero modes appear at odd LP lobes along CdGM analog states.

2. MZMs are generally topologically unprotected except for small islands in parameter space.

3. Tubular-core nanowires are a good experimental proposal for MZMs.

4. The solid-core phenomenology is more complex and depends on the radial modes.
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6. Generic disorder generates new MZMs and opens topological minigaps.

http://dx.doi.org/10.48550/arXiv.2312.11613


Engeniering topologically protected edge states
Signals in the LDOS: CdGM analogs

Full 2D simulation: band bending and the solid-core model
Disorder-induced mode-mixing: a new mechanism for topology

Conclusions

Summary
Messages

Conclusions

I In pristine full-shell hybrid nanowires:
1. Majorana zero modes appear at odd LP lobes coexist with CdGM analog states.
2. MZMs are generally topologically unprotected except for small islands in parameter

space.
3. Tubular-core nanowires are a good experimental candidate for protected MZMs.
4. The solid-core phenomenology is more complex and depends on the radial modes.

I Adding mode-mixing:
5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.
6. Generic disorder generates new MZMs and opens topological minigaps.

Carlos Payá Full-shell Majorana nanowires

.

.
C. Payá et al. 2023, arXiv.

Conclusions

I In pristine full-shell hybrid nanowires:
1. Majorana zero modes appear at odd LP lobes coexist with CdGM analog states.
2. MZMs are generally topologically unprotected except for small islands in parameter

space.
3. Tubular-core nanowires are a good experimental candidate for protected MZMs.
4. The solid-core phenomenology is more complex and depends on the radial modes.

I Adding mode-mixing:
5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.
6. Generic disorder generates new MZMs and opens topological minigaps.

20
24

-0
1-

10

Full-shell Majorana nanowires
Conclusions

Messages
Conclusions

1. Majorana zero modes appear at odd LP lobes along CdGM analog states.

2. MZMs are generally topologically unprotected except for small islands in parameter space.

3. Tubular-core nanowires are a good experimental proposal for MZMs.

4. The solid-core phenomenology is more complex and depends on the radial modes.

5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.

6. Generic disorder generates new MZMs and opens topological minigaps.

http://dx.doi.org/10.48550/arXiv.2312.11613


Engeniering topologically protected edge states
Signals in the LDOS: CdGM analogs

Full 2D simulation: band bending and the solid-core model
Disorder-induced mode-mixing: a new mechanism for topology

Conclusions

Summary
Messages

Conclusions

I In pristine full-shell hybrid nanowires:
1. Majorana zero modes appear at odd LP lobes coexist with CdGM analog states.
2. MZMs are generally topologically unprotected except for small islands in parameter

space.
3. Tubular-core nanowires are a good experimental candidate for protected MZMs.
4. The solid-core phenomenology is more complex and depends on the radial modes.

I Adding mode-mixing:
5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.
6. Generic disorder generates new MZMs and opens topological minigaps.

Carlos Payá Full-shell Majorana nanowires

.

.
C. Payá et al. 2023, arXiv.

Conclusions

I In pristine full-shell hybrid nanowires:
1. Majorana zero modes appear at odd LP lobes coexist with CdGM analog states.
2. MZMs are generally topologically unprotected except for small islands in parameter

space.
3. Tubular-core nanowires are a good experimental candidate for protected MZMs.
4. The solid-core phenomenology is more complex and depends on the radial modes.

I Adding mode-mixing:
5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.
6. Generic disorder generates new MZMs and opens topological minigaps.

20
24

-0
1-

10

Full-shell Majorana nanowires
Conclusions

Messages
Conclusions

1. Majorana zero modes appear at odd LP lobes along CdGM analog states.

2. MZMs are generally topologically unprotected except for small islands in parameter space.

3. Tubular-core nanowires are a good experimental proposal for MZMs.

4. The solid-core phenomenology is more complex and depends on the radial modes.

5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.

6. Generic disorder generates new MZMs and opens topological minigaps.

http://dx.doi.org/10.48550/arXiv.2312.11613


Engeniering topologically protected edge states
Signals in the LDOS: CdGM analogs

Full 2D simulation: band bending and the solid-core model
Disorder-induced mode-mixing: a new mechanism for topology

Conclusions

Summary
Messages

Conclusions

I In pristine full-shell hybrid nanowires:
1. Majorana zero modes appear at odd LP lobes coexist with CdGM analog states.
2. MZMs are generally topologically unprotected except for small islands in parameter

space.
3. Tubular-core nanowires are a good experimental candidate for protected MZMs.
4. The solid-core phenomenology is more complex and depends on the radial modes.

I Adding mode-mixing:
5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.
6. Generic disorder generates new MZMs and opens topological minigaps.

Carlos Payá Full-shell Majorana nanowires

.

.
C. Payá et al. 2023, arXiv.

Conclusions

I In pristine full-shell hybrid nanowires:
1. Majorana zero modes appear at odd LP lobes coexist with CdGM analog states.
2. MZMs are generally topologically unprotected except for small islands in parameter

space.
3. Tubular-core nanowires are a good experimental candidate for protected MZMs.
4. The solid-core phenomenology is more complex and depends on the radial modes.

I Adding mode-mixing:
5. Mode-mixing induced by disorder behaves as an effective p−wave pairing.
6. Generic disorder generates new MZMs and opens topological minigaps.
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tubular-core model is the optimal candidate but, in the presence of mode-mixing, half
of the parameter space is suitable for topologically protected Majorana bound states.
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I New red stripes. Hexagon has ` = 6.
I Upper stripe: mJ = 0 mixes with

mJ = ±6.
I Lower stripe: mJ = 3 mixes with

mJ = −3.
I The MZM coming from mJ = ±3

cannot interact with mJ = 0 ⇒ they
overlap.

I The mJ = ±6 MZM annihilates the
mJ = 0 MZM.
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• mJ 6= 0 stripes are just a continuation of mJ = 0 (difficult to see in just one slide).

• In blue, original mJ = 0 PD border.
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system is equivalent to the cylinder.
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