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Abstract

In this work we study the electronic spectrum of full-shell nanowires –hybrid systems composed of a semiconductor
nanowire with strong spin-orbit coupling (SOC) fully encapsulated by a thin, epitaxially-grown superconductor–,
when subject to an axial magnetic field. These wires were brought to the spotlight recently as an alternative nanowire
configuration for the creation of Majorana zero modes with several advantages with respect to previous designs.
We analyze the bandstructure and the local density of states (LDOS) at one end of semi-infinite such wires, which
presents a rich phenomenology. On the one hand, and due to the cylindrical geometry of the superconducting shell,
the system exhibits the Little-Parks (LP) effect, whereby the superconducting gap is modulated periodically with
magnetic flux in units of the superconducting flux quantum Φ0, forming a series of lobes labelled by the number of
the fluxoid quanta threading the hybrid wire, n = 0,±1,±2.... On the other hand, and due to the confining potential
produced by the normal-superconducting interface, the nanowire core develops subgap Andreev bound states that
are the hybrid-wire analogs of the Caroli-de Gennes-Matricon (CdGM) states in vortices of type II-superconductors.
These CdGM analogs are in fact shell-induced Van Hove singularities in propagating core subbands. Given a strong
enough SOC, the system can undergo a topological phase transition an exhibit Majorana bound states (MBSs) at its
ends, which appear as zero bias peaks (ZBPs) in the LDOS. We study the behavior of these ZBPs, as well as other
subgap states, with a number of models of increasing complexity, all applied to the experimentally relevant case of
InAs/Al hybrid wires. We start with a simple, analytically-solvable model known as the hollow-core approximation,
where all the semiconductor charge is assumed to be located at the superconductor/semiconductor interface. The
CdGM Van-Hove states disperse with flux within each LP lobe with positive or negative slope depending on their
angular momentum. In the hollow-core case, all the Van-Hove singularities in LDOS cross at the center of the LP
lobes, where the hybrid wire is threaded by an integer value of Φ0, forming a so-called degeneracy point. If the wire
is in the topological phase, ZBPs appear at the edges of odd-n LP lobes, where the flux is close to half-integer values
of Φ0. Going beyond simplistic toy models, we perform microscopic tight-binding (TB) simulations of the hybrid
wires. First we add a finite thickness to the semiconductor core in what we call the tubular model. We observe that
the CdGM degeneracy point shifts towards larger values of the magnetic flux within each lobe as we increase the
semiconductor thickness, breaking the previous symmetry of subgap states around the lobe center, and extending the
left MBS-ZBP to larger values of the flux, while the right one disappears. This ZBP eventually extends all along odd
LP lobes in the solid-core limit. Finally, we consider a realistic radial dome profile for the electrostatic potential of
ohmic superconducting-semiconducting heterostructures, finding that in this case the system behaves similarly than
with the tubular model of a finite semiconductor width. For realistic wires, Majorana-driven ZBPs can be obtained
for a range of dome profiles for wires with strong SOC, typically one order of magnitude larger than the nominal
values. Interestingly, the behaviour of the CdGM analogs is barely affected by the SOC.
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Resumen

En este trabajo estudiamos el espectro electrónico de nanohilos encapsulados – sistemas h́ıbridos compuestos por un
nanohilo semiconductor con fuerte acomplo esṕın-órbita (en inglés, SOC) completamente encapsulado por una capa
de poco grosor de un superconductor crecido epitaxialmente – sujetos a un campo magnético axial. Estos hilos han
sido el centro de atención de recientes investigaciones como una configuración alternativa para la creación de modos de
Majorana con diversas ventajas respecto a los diseños previos. En particular, analizamos la densidad local de estados
(LDOS en inglés) en el borde de un hilo semi-infinito como los descritos, presentando una rica fenomenoloǵıa. Por
un lado, debido a la geometŕıa ciĺındrica del recubrimiento superconductor, el sistema exhibe el efecto Little-Parks
(LP), por el cual el gap superconductor se modula periódicamente con el flujo magnético en unidades del cuanto
de flujo superconductor, Φ0, formando una serie de lóbulos etiquetados por el número de cuantos de fluxoide que
atraviesan el hilo, n = ±1,±2, .... Por otro lado, debido al potencial de confinamiento producido por la interfase
normal-superconductor, el núcleo del nanohilo desarrolla estados ligados de Andreev en el interior del gap que son
análogos en hilos h́ıbridos a los estados Caroli-de Gennes-Matricon en vórtices de superconductores tipo II. Estos
estados CdGM son de hecho singularidades de Van Hove inducidas por la corteza en las sub-bandas propagantes del
núcleo. Dado un SOC lo suficientemente fuerte, el sistema atraviesa una transición topológica y exhibe estados ligados
de Majorana (MBS en inglés) en sus extremos, que aparecen como picos de voltaje cero (ZBP en inglés) en la LDOS.
Estudiamos el comportamiento de estas ZBP aśı como de otros estados en el interior del gap, con diveros modelos
de creciente complejidad aplicados al caso relevante experimentalmente de hilos h́ıbridos InAs/Al. Comenzamos con
un modelo simple y resoluble anaĺıticamente conocido como modelo hollow-core (núcleo hueco), donde se asume que
toda la carga del semiconductor está localizada en la interfase superconductor/semiconductor. Las singularidades
CdGM Van Hove dispersan con el flujo en cada lóbulo LP con pendiente positiva o negativa dependiendo de su
momento angular. En el caso hollow-core, todas las singularidades Van Hove en la LDOS se cruzan en el centro de
los lóbulos LP, donde el hilo h́ıbrido es atravesado por un valor entero de Φ0, formando lo que hemos denominado
punto de degeneración. Si el hilo está en la fase topológica, aparecen ZBP en los bordes de los lóbulos LP con n
impar, donde el flujo está cerca de un valor semientero de Φ0. Yendo más allá de los modelos anaĺıticos simplistas,
realizamos simulaciones microscópicas tight-binding de los hilos h́ıbridos. En primer lugar, añadimos un grosor finito al
núcleo semiconductor en lo que llamamos modelo tubular. Observamos que el punto de degeneración de los CdGM se
desplaza a valores mayores del flujo magnético en cada lóbulo según aumenta el grosor del semiconductor, rompiendo
la simetŕıa previa de los estados en el interior del gap alrededor del centro del lóbulo, y extendiendo el MBS-ZBP
izquierdo a valores mayores del flujo, mientras que el derecho desaparece. Este ZBP finalmente se extiende a lo largo
de cada lóbulo LP en el ĺımite de núcleo sólido (solid-core). Finalmente, consideramos un potencial tipo cúpula radial
realista para el potencial electrostático de estructuras óhmicas superconductor/semiconductor, encontrando que en
este caso el sistema se comporta de forma similar al modelo tubular de un cierto grosor finito. Para hilos realistas,
se pueden obtener ZBP inducidos por MBS para un cierto rango de perfiles de potencial y fuerte SOC, cono valores
t́ıpicamente un orden de magnitud superiores al nominal. Es llamativo que el comportamiento de los análogos CdGM
apenas se ve afectado por el SOC.
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I. INTRODUCTION

Topological superconductors have been studied in con-
densed matter physics since the beginning of the century
due to the fascinating properties of topological materials
combined with the superconducting phase [1–6]. Back
in 2001, Kitaev [7] proposed his famous toy-model for
a one-dimensional topological superconductor. In the
topological phase, the system develops edge states at the
wire ends with several interesting properties. These in-
gap Bogoliuvov zero energy excitations, that are topo-
logically protected by the electron-hole symmetry of the
Bogoliubov-de Gennes (BdG) Hamiltonian, and whose
fermionic creation operators are equal to their adjoint,
are known as Majorana bound states (MBSs). How-
ever, they do not follow fermionic statistics, but a non-
abelian one, making them good candidates for a topolog-
ical qubit.

As the Kitaev model needs a spinless fermionic liq-
uid and superconductivity, a p-wave superconductor is,
a priori, required. However, in 2008 Fu and Kane [8]
proposed a way to obtain this condition by proximizing
an s-wave superconductor to a topological insulator. In
2010, Lutchyn et al. and Oreg et al. [9, 10] designed
a simpler theoretical model in which a semiconductor
nanowire with strong spin-orbit coupling (SOC), in con-
tact to a conventional superconductor and subject to an
external magnetic field B, reproduces the Kitaev condi-
tions. Through the Zeeman effect, given a certain B,
the system undergoes the topological phase transition,
marked by a band inversion, producing MBSs at its ends.
Since this hybrid system, also known as the Majorana
nanowire, is amenable to be realized in a laboratory, it
has been extensively studied both theoretically and ex-
perimentally (see Ref. 1 or 2 for an extensive review on
the subject.). However, after several detections of zero
bias peaks (ZBPs) in tunneling spectroscopy experiments
in principle compatible with MBSs, it has been realized
in the community that the reality of this nanowires is
far more complex than initially assumed with minimal
models [1, 11–13]. Unfortunately, there are several triv-
ial mechanisms in realistic nanowires that can simulate
MBS signals, so new geometries and experimental de-
vices, built with higher quality materials and that go
beyond in local spectroscopy, have been recently studied.

One of the inconveniences of the Oreg-Luthcyn pro-
posal is that high intensity magnetic fields are required
to achieve the topological transition, closing the super-
conducting gap before the transition can occur [14]. Re-
cently, a new nanowire design has been proposed in the
literature that could overcome this problem, as well as
to present several advantages. Instead of using a semi-
conductor nanowire with only some of its facets covered
by the superconductor, which is the the traditional Ma-
jorana nanowire, it has been proposed and realized the
use of so-called full-shell nanowires [15]. In a full-shell
nanowire, a thin superconducting shell, typically grown
epitaxially over the semiconductor, completely covers the

semiconducting core all around. In these wires, the topo-
logical phase transition is not driven by the Zeeman ef-
fect, like in the Oreg-Lutchyn proposal, but by the orbital
effect induced by the magnetic flux Φ threading the wire
in the presence of an axial field B [15]. It needs lower
magnetic fields to drive the nanowire into the topological
state, and the MBSs are predicted to appear at specific
values of Φ, making its unequivocal detection somewhat
easier.

This new system, schematically depicted in Fig. 1(a),
has moreover demonstrated to have a very rich phe-
nomenology [16–20], even outside the topological phase,
due mainly to the doubly-connected geometry of the su-
perconductor, i.e., to the fact that the superconductor
has the shape similar to a cylinder. Firstly, the Little-
Parks (LP) effect arises, that is, the modulation of the
superconductor critical temperature (or gap ∆) as a func-
tion of the axial magnetic flux Φ. Due to the supercon-
ductor cylindrical shape, the phase of the superconduct-
ing order parameter acquires an integer winding, known
as the winding number, n ∈ Z. This is also known as
the fluxoid number, since it coincides with the number
of fluxoid quanta, in units of Φ0 = h/2e, that threads
the superconductor in the presence of a magnetic field.
Note that in this system, the fluxoid and not the flux is
quantized. In the LP effect, ∆ is maximum at Φ = nΦ0

and minimum, or even zero in the LP destructive regime,
at Φ = n

2Φ0 forming a series of so-called LP lobes with
Φ0 periodicity, as illustrated in Fig. 1(b). This effect,
mainly controlled by the geometry of the system and the
superconductor coherence length, ξ, is well-known both
experimentally and theoretically [21–25] since the 60s.
However, the theory used in this research was developed
a decade ago [26, 27].

Secondly, the normal and Andreev reflections at the su-
perconductor/semiconductor interface give raise to states
analog to Caroli-de Gennes-Matricon states (CdGM) in
Abrikosov vortex lines of type-II superconductors [24, 28–
30], which have been studied in a recent publication [31].
CdGM analog states in nanowires were found to emerge
from shell-induced Van Hove singularities in the quasi-
one dimensional propagating subbands that propagate
along the semiconducting core [31]. However, the key to
allow for a topological transition in nanowires, as was also
the case in the original toy-model proposal by Oreg et
al. and Lutchyn et al. [10, 32], is the SOC. In the study
of subgap states in full-shell nanowires done in Ref. 31,
this effect was neglected as it is not relevant away form
the topological phase. In this master thesis, we describe
how the SOC impacts the system both in the trivial and
topological regimes, starting from the simplest full-shell
nanowire model and adding features that get it closer to
the experiment.

We use a cylindrical model of the hybrid nanowire that
allows us to characterize the subbands of the system in
terms of a generalized angular momentum number mJ .
Then, for a semi-infinite full-shell nanowire, we compute
the local density of states (LDOS) at its end. For the
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Figure 1. Full-Shell nanowire models and Little-Parks
effect. (a) Schematic of the cylindrical model used for a
semi-infinite full-shell nanowire. The semiconducting core in
yellow, with radius Rcore, is covered all around by a thin su-
perconducting shell in blue, of width Rshell −Rcore. The hy-
brid system is penetrated by an axial magnetic field B in the
z direction. (b) Sketch of the Little-Parks (LP) effect. The
doubly-connected geometry of the superconducting shell in-
duces a modulation of the superconducting gap, ∆, as a func-
tion of the magnetic flux Φ, with period Φ0 (the superconduct-
ing flux quantum). This modulation gives rise to so-called
LP lobes, where the gap is maximum around integer values of
the normalized flux, and minimum at half-integer ones. De-
pending on the effective LP radius RLP = (Rcore +Rshell)/2,
and the superconducting coherence length, ξ, the gap may
be zero at the lobe edges (destructive regime) or finite (non-
destructive regime). Due to the proximity effect, supercon-
ducting correlations are induced in the semiconducting core.
(c,d,e) Axial cut of the three models studied. Introducing a
fictitious inner radius Raxis for the semiconductor, the hollow-
core model (c) corresponds to the case where all the charge
density is assumed to be localed at the superconducting-
semiconducting interface, so that Rshell = Rcore = Raxis. In
the tubular model (d), the semiconductor has a finite thick-
ness, Rcore − Raxis. Finally, the solid-core model (e) has no
empty region inside (Raxis = 0) and thus it is the closest to
reality. It is the one represented in (a).

parameters of the system, we use the ones of an InAs
core, and an Al shell, as these are the materials used in
recent experiments [15, 20, 33].

This report is organized as follows. First, in Sec. II,
we discuss how the LP effect affects superconductivity
in our system; then, in Sec. III, we use a hollow-core
model, effectively one dimensional, that can be solved
analytically, to carefully analyze the effect of the SOC in
these hybrid nanowires. In this model, we take the ficti-
tious inner radius of the semiconductor cylinder, Raxis,
to be equal to the outer one, Rcore, and to the supercon-
ductor external radius Rshell, as shown in Fig. 1(c). We
compare the band structure of the system with and with-
out SOC and obtain a phase diagram for the topological
phase as a function of the SOC parameter and the chem-
ical potential of the system, commenting on the role of
the superconductor penetration length and the Zeeman
effect. In Sec. IV we introduce a finite thickness for the
semiconductor, making Raxis < Rcore as illustrated in
Fig. 1(d). We call this the tubular model. To take into
account the superconducting proximity effect in a numer-

ically accessible manner, we integrate-out the supercon-
ductor and include its effect on the semiconductor core
as a self-energy at the core’s outer radius. Finally, we
reach the realistic solid-core situation, where Raxis = 0
[Fig. 1(e)], in Sec. V, where apart from considering the
case of a constant chemical potential, we also consider a
more realistic scenario where the semiconductor electro-
static potential has a radial dome profile, characteristic of
a superconductor/semiconductor ohmic contact. Finally,
we discuss our results and give our conclusive remarks in
Sec. VI.

II. THE LITTLE-PARKS EFFECT

We describe superconductivity with a pairing potential
∆(r⃗). Through this report, we use ∆ = ∆(Φ). Since this
order parameter is single-valued, its phase must change
by n ∈ Z at each 2π loop around the shell ring, that is,
in cylindrical coordinates r⃗ = (r, φ, z), with the nanowire
axis at z,

∆(r⃗) = ∆einφ. (1)

This integer number is n = Φ′/Φ0, the fluxoid. Φ′

is known to be quantized in units of Φ0 for multiply-
connected superconductors since the very first studies
on superconductivity. F. London [34] defined the flux-
oid as the magnetic flux Φ perturbed by the circulation
of persisting supercurrents induced by Φ. For very thin
superconductors, our case, the Meissner effect is negligi-
ble [35, 36], so the persistent supercurrents do not van-
ish anywhere in the superconductor and thus the flux is
not quantized. The screening supercurrents term oscil-
lates with the flux as the fluxoid increases in units of
Φ0, inducing a modulation of ∆ with period Φ0. This is
known as the LP effect [21, 22, 24, 25]. Schwiete and Oreg
[27] demonstrated that this effect can be modeled anal-
ogously to paramagnetic impurities, leading to a com-
pact set of transcendental equations that very precisely
compute the LP lobes, showing two distinct regimes. In
the destructive regime, orange in Fig. 1(b), for cer-
tain fluxes around half integer values of Φ/Φ0, where
the flux performs abrupt first order transitions, the pair-
ing goes to zero. In the non-destructive regime, blue
in Fig. 1(b), at Φ/Φ0 = n/2, ∆ reaches its minimum.
This second regime is valid when Rshell/ξ > 0.6 and
Rshell ≳ Rcore. Typical experimental values [15] are
Rcore ∼ 70nm, Rshell ∼ 80nm, ξ ∼ 100nm, so our cal-
culations are performed in the non-destructive regime.
Fortunately, this scenario allows for another much sim-
pler parametrization of the gap [23, 31]

∆(Φ)

∆(0)
= 1− γ

(
Φ

Φ0
− n

)2

, (2)

with

γ = 4

(
1− ∆

(
1
2Φ0

)
∆(0)

)
. (3)
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III. HOLLOW-CORE NANOWIRE

A. Model

Following Ref. 15, we write a Hamiltonian that takes
into account the effect of the magnetic flux on the shell
(modulated by the LP effect) and on the core subbands.
We use a cylindrical approximation for the hybrid wire
and thus cylindrical coordinates as described in the pre-
vious section. We start with the simplest possible model
for this system, called the hollow-core model, where we
consider that all electrons are located at the supercon-
ductor/semiconductor interface, so there is no radial co-
ordinate, r = Rcore (see Fig. 1(c)). Ignoring the Zeeman
effect, since it has a small effect for the small magnetic
fields needed, the Hamiltonian of the core takes a very
simple expression

H0 =
(p⃗+ eAφφ̂)

2

2m∗ − µ+ αr̂ [σ⃗ × (p⃗+ eAφφ̂)] , (4)

where Aφ = Φ(Rcore)/2πRcore is the angular component
of the vector potential, µ is the semiconductor chemical
potential, m∗ the electron effective mass, and the last
term is the semiconductor Rashba SOC, controlled by the
parameter α, with σ the spin Pauli matrices and e > 0
the unit charge. We use ℏ = 1 and simplify notation
saying Φ = Φ(Rcore).

1. Bogoliuvov-de Gennes Hamiltonian

We are now able to write the Bogoliuvov-de Gennes
(BdG) Hamiltonian of the full system in the Nambu basis

Ψ = (Ψ↑,Ψ↓,Ψ
†
↓,−Ψ†

↑),

HBdG =

(
H0(A⃗) ∆(r⃗)

∆∗(r⃗) −σyH0(A⃗)∗σy

)
, (5)

where we introduce the proximity effect with an effective
pairing through (2) with ∆(0) = ∆0. The angular, spin
and winding symmetries allow us to define a generalized
angular momentum

Jz = −i∂φ +
1

2
σz +

1

2
nτz, (6)

where τ are the electron-hole space Pauli matrices, that
fulfills [Jz, HBdG] = 0, so the eigenstates can be decom-
posed in generalized angular momentum modes, that is,

ΨmJ
(r, φ, z) ∝ ei(mJ− 1

2σz− 1
2nτz)φΨmJ

(r, z), (7)

with a good quantum number mJ . As the wave function
must be single valued, we have

mJ ∈
{

Z n odd
Z+ 1

2 n even
, (8)

so n odd regions have an odd number of mJ states and
n even ones an even number of mJ states, marking clear
phase transitions at Φ

Φ0
= n

2 .
We can eliminate the angular dependence of the Hamil-

tonian using the rotation in (7),

H̃BdG =

[(
mJ − 1

2σz − 1
2nτz + eAφRcoreτz

)2
2m∗R2

core

+
k2z
2m∗

− µ− α

Rcore

(
mJ − 1

2
σz −

1

2
nτz + eAφRcoreτz

)
σz

+ αkzσy] τz

+∆τx,

(9)

where we have also used that our system is semi-infinite
to apply translation symmetry and change the axial mo-
mentum operator pz for a good quantum number kz. We
write the Hamiltonian in this way to be able to compare
it with the ones with radial dependence in the following
sections, but it can be simplified to a more manageable
expression [15]

H̃mJ
=

[
k2z
2m∗ − µmJ

]
τz + VZσz +AmJ

+ CmJ
σzτz + αkzσyτz +∆τx,

(10)

where

µmJ
= µ− 1

8m∗R2
core

(
4m2

J + 1 + ϕ2
)
− α

2Rcore
(11)

is the effective chemical potential,

VZ = ϕ

(
1

4m∗R2
core

+
α

2Rcore

)
(12)

the effective Zeeman field and

AmJ
= −ϕ

mJ

2m∗R2
2

, (13)

CmJ
= −mJ

(
1

2m∗R2
core

+
α

Rcore

)
, (14)

represent the coupling of Jz with the magnetic field. We
use ϕ = n − Φ

Φ0
. Notice that there are only two kinds

of regions that periodically alternate depending on the
parity of the fluxoid, distinguished by having an even
or odd number of mJ , each of them associated to a LP
lobe. We also observe that ϕ only enters (10) as ϕ2, so
each lobe has a symmetry axis at Φ = nΦ0.

B. Van Hove singularities and phase diagram

We can now diagonalize the Hamiltonian and study
the behavior of its subbands. For the sake of simplic-
ity, in these first calculations we switch off the LP gap
modulation with flux by setting γ = 0. As shown in Fig.
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Figure 2. Effect of SOC on the Nambu bands of a hollow-core nanowire. BdG dispersion relation on an infinite
hollow-core nanowire vs longitudinal momentum kz (in arbitrary units) for different values of Φ/Φ0. The energy E is measured
with respect to the chemical potential of the superconductor at the middle of its gap. The colors assigned to the different
parallel subbands represent their generalized angular momentum quantum number mJ . (a,b) In the absence of magnetic field,
at the center of the n = 0 LP lobe, all subband edges are situated at ∆0. However, for α = 0 the subbands are 4 times
degenerate (±mJ and spin), while for α ̸= 0 they are doubly degenerate in ±mJ . (c,d) As we increase the flux towards the
edge of the n = 0 LP lobe, Φ/Φ0 = 0.49, the subband minima lie below the parent superconductor gap, leading to Van Hove
singularities that we identify as CdGM analog states in the LDOS. A finite flux breaks ±mJ degeneracy, but positive and
negative mJ modes are still degenerate in spin for α = 0. Introducing SOC, no subband is degenerate. (e,f) Changing to an
odd winding number, n = 1 in this case, there are now an odd number of subbands. Except for this, the qualitative behavior
is the same as before. (g,h) At the center of the n = 1 LP lobe, where Φ/Φ0 = 1, we recover a situation similar to that in
(a), where all the subband minima are at energy ∆0. For these calculations, we have used m∗ = 0.023, Rshell = Rcore = 70nm,
∆0 = 0.23meV, µ = 0.5meV and neglected the LP gap modulation, γ = 0.

2, the main feature of these subbands are the avoided
crossings. They are induced by Andreev reflections at
the shell/core interface and result in Van Hove peaks in
the LDOS that disperse with the magnetic flux. We no-
tice that, while the introduction of SOC breaks band
degeneracy, the peaks barely shift in energy, or do not
even move for integer fluxes. In consequence, the Van
Hove singularities are degenerate at the center of each
lobe for this thin-shell hollow-core model. As expected,
all subbands are symmetric with respect to the kz = 0
axis, and thus show a maximum or minimum in energy
at that value of the momentum. It is also relevant to
notice that the electron (hole) reflection of a hole (elec-
tron) band is not associated with the same mJ but with
the opposite one. Hence, an eventual crossing between
that pair of subbands cannot produce any kind of bound
state or feature in the LDOS since they are not allowed
to interact by the symmetries of the Hamiltonian. The
only exception to this is mJ = 0, a gap closing of this
mode at kz = 0 satisfies

ΨE,mJ
(kz) = Ψ−E,−mJ

(−kz), (15)

allowing for the topological transition and the emergence
of a MBS.

The Van Hove peaks give raise to what we call CdGM
analog states, that we analyze in Fig. 3, where we have
plotted the band minima in the first lobe for two values
of the SOC parameter. The mJ = 0 mode has a richer
behavior with α than finite mJ modes. For high enough
values of this parameter, CdGM analog states stabilize
around a structure similar to that of panel (d), while for
zero angular momentum they behave like in panel (c),
but no stable structure is reached as the kz = 0 crossing
(in red) displaces with the magnetic flux. This crossing
is the gap closing that marks the topological transition of
the system. As the Hamiltonian is analytically solvable,
we can calculate its position for any set of parameters,
allowing us to compute a topological phase diagram.

In Fig. 4, we show the phase diagram of the system we
have studied in this section. This plots, however, contain
more information, since the color represents the length
of the topological region inside the odd lobe by means
of the lowest possible value of |ϕ| for which the system
is topological, |ϕm|. Notice that, as we neglect the Zee-
man effect, both sides of the lobe are symmetric and thus
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Figure 3. Energy of the Van Hove singularities in the
first LP lobe of a hollow-core nanowire. Analytically
calculated subband minima for mJ = 0 (a,c) and mJ = 1
(b,d) vs normalized flux in the absence (a,b) and presence
(c,d) of SOC. Colors represent the kz value associated to that
band minimum. The system is the same as in Fig. 2. (a,c)
The mJ = 0 mode is the most affected by the introduction
of SOC due to the rapid variation with flux of the subband
minimum at kz = 0, see red curve in (c). The zero energy
crossings at kz = 0 are the gap closings associated to the
topological phase transition of the hybrid nanowire. (b,d)
The subband minima for mJ = 1 only weakly depend on flux,
specially for the strong α values that allow for a topological
phase transition in the first lobe, see (d). Only for very small
α a more dispersing kz = 0 Van Hove singularity appears
that never crosses zero energy, as seen in (b). We have again
neglected the LP effect, considering ∆(Φ) = ∆0. Parameters
are as in Fig. 2.

Figure 4. Phase diagram of a hollow-core nanowire,
as a function of the semiconductor chemical potential µ and
the Rashba SOC α. The color scale represents the value of
ϕ = n − Φ/Φ0 in an odd LP lobe at which the topological
phase transition takes place, ϕm. As the Zeeman effect is
neglected, there is no difference between positive and negative
ϕ. The trivial region is not colored. In panel (a) we consider
∆(Φ) = ∆0, i.e., γ = 0, while in panel (b) we consider the
LP gap modulation in the non-destructive regime, γ = 2.
Qualitatively, the phase diagram does not change, but larger
γ allows to obtain a topological region for significantly lower
values of µ and α. Parameters are as in Fig. 2.

twin topological regions appear at both sides of the lobe.
For a ZBP associated to a MBS to reach the center of the
lobe, that is, having ϕm = 0, we need extremely high val-
ues of α and µ. The introduction of the non-destructive
LP effect, in panel (b), does not change the phase dia-
gram qualitatively, but allows for topology with smaller
values of the Rashba parameter and chemical potential,
even if it is just at the very edge of the lobe. We can
pictorially understand what is going on with Fig. 3(c),
as the LP effect curves de CdGM states and moves the
mJ = 0, kz = 0 crossings closer to the center of the lobe,
enlarging the topological region at the edges.

C. Local density of states

Now that we have understood the behavior of the
CdGM-Van Hove states with SOC from the band struc-
ture, we calculate the LDOS at the edge of the nanowire.
It is given by

ρ(ω) = − 1

π

∑
mJ

ImGmJ
(ω), (16)

where GmJ
is the Greens function of the system at the

first site of the semi-infinite chain of rings that compose
the cylinder and ω the energy explored. We compute this
Greens function numerically discretizing our Hamiltonian
into a tight-binding (TB) model with just one radial site
and converging the discretization parameter a0 for the
angular sites using standard methods [37]. In Fig. 5, we
show six examples of LDOS for different values of the
SOC parameter as a function of the axial magnetic flux.
We have chosen the parameters, which are the same for
all figures in this section, so only 5 mJ modes contribute
significantly to the LDOS in the first lobe with α = 0.
This case is shown in panel (a), where all finitemJ CdGM
analog states, the intense lines in the plots, are 4 times
degenerated, as observed in the band structure. When
SOC is switched on (panels (b) to (f)), more and more
mJ modes contribute to the total LDOS. Again as pre-
dicted from the analytical calculations, the CdGM-Van
Hove state associated to mJ = 0, kz = 0 behaves qual-
itatively differently than the others. It is more intense
than the other signals (panel (b)) until topology is al-
lowed, and its curvature is significantly reduced, becom-
ing basically a triangle when the MBS emerges. This is
reflected in the LDOS by a strong ZBP. For the α values
that allow topology, this state is the slightest of all visi-
ble CdGM-Van Hove states. Their behavior reproduces
what we obtained from band minima, as illustrated in
panel (d), where we have plotted the analytical calcula-
tion of Fig. 3(c) adding LP, over the LDOS of the first
lobe. There exist some small deviations from the ana-
litical predictions since CdGM analogs are bound states
that hang from the gap edges and hence can be located
at a slightly different energy. All in-gap states, what-
ever their mJ or kz, are degenerated for integer fluxes at
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Figure 5. LDOS at the end of a semi-infinite hollow-core nanowire for different SOC values. LDOS (in arbitrary
units) versus energy ω and applied normalized flux, Φ/Φ0, displaying half of the zeroth lobe, first and second lobes. The subgap
features are CdGM analogs whose bright signals correspond to Van Hove singularities of the different parallel subbands, each of
them associated to a mJ and a kz. The number of CdGM-Van Hove states depends on the semiconductor chemical potential, µ.
The induced pairing is LP modulated, ∆(Φ). In the hollow-core approximation, all even lobes and all odd lobes are identical,
respectively. (a) α = 0: Without SOC, even and odd lobes look qualitatively similar. The different CdGM-Van Hove states
disperse with flux with a slope that is proportional to mJ , and they cross at the degeneracy points at the center of the lobes.
They are curved to lower energies close to the lobe edges due to the LP gap modulation. The abrupt transition from even to
odd lobes is very clear in this non-destructive LP regime. We have chosen the parameters so that only 5 mJ modes contribute
significantly to the LDOS without SOC in the first lobe. They are the same as in previous figures with γ = 2. (b) Same
as before but with α = 10meVnm: The CdGM analog state associated to mJ = 0, kz = 0 in the n = 1 lobe is more intense
and has a slightly different shape than the others, with less curvature far from the center of the lobe. We observe that some
CdGM-Van Hove states cross at zero energy at the lobe edges, but they are not associated to mJ = 0, kz = 0. As we increase
α, more mJ modes contribute to the LDOS because the effective doping of the hybrid nanowire increases. (c) α = 40meVnm:
The bright CdGM-Van Hove state associated to mJ = 0, kz = 0 that we saw in the previous panel has lost most of its intensity,
and it has crossings inside the first lobe that cause a topological phase transition. A ZBP is clearly visible at the edges of the
first lobe, associated with a MBS appearing at the end of the semi-infinite nanowire. The topological gap is only a true gap for
the mJ = 0 mode, as other mJ CdGM analog states partially fill that gap. (d) α = 60meVnm: The situation is pretty similar
to the previous panel, but the topological region in flux is larger. Thus, each Majorana ZBP has a larger spread from the LP
lobe edge towards the center of the lobe, although it is still pretty localized at the edges. We have overplotted the analytical
solution of the band minima in the first lobe. The lines associated to kz = 0 (red) match perfectly, but those with finite kz
(blue) slightly deviate. (e) α = 90meVnm: The topological region in the odd lobes is shorter than before, because we have
exceeded the α value that gives its maximum length in flux. The topological gap is completely filled by mJ ̸= 0 CdGM analog
states. (f) α = 120meVnm: The topological region has practically disappeared. The behavior of mJ = 0 subband is similar to
that of panel (c), but now there are more mJ modes (13 of them) that fill partially the true gap (in black). Concerning the even
lobes plotted in these simulations, they have a very similar behavior than the odd one, but without any special mJ = 0 mode
that gives raise to a MBS. These numerical simulations have been performed discretizing the system in steps of a0 = 5nm.

ω = ∆. This feature, that we call degeneracy point, is
key for our discussions in the following sections.

The calculations shown in Fig. 4 for the topological
phase and the length of the MBSs are matched perfectly,
as shown for example in panel (d). While the topological
gap is a true gap for the mJ = 0 LDOS, it is partially or
even totally filled by other mJ modes in the total LDOS.
For the perfectly symmetric system, where different mJ

modes cannot couple, this does not affect at all the MBSs.
However, if the cylindrical symmetry is broken and mJ

is not a good quantum number anymore, the topological
region could be seriously affected.

1. A short trip under the carpet

Using the analytical model, we noticed that the equa-
tion that gives the parameters of the topological transi-
tion has 4 solutions in flux, not only the 2 visible at the
first lobe (see for example in Fig. 3(c)). The other two
solutions could be complex, but there is nothing that pre-
vents them from being real. Actually, they are real but
they simply lie outside of the visible region of the odd
lobes. If it was possible to vary the flux to larger/smaller
values than those of a particular odd lobe, while keeping
the fluxoid number fixed, creating a metastable state,
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Figure 6. LDOS at the end of a semi-infinite hollow-
core nanowire in the topological regime with forced
fluxoid n = 1 for all fluxes. Vertical, dotted lines cor-
respond to the analytical prediction for the flux at which
we should observe topological phase transitions. We have
used the same parameters as in the previous figures with
α = 60meVnm, γ = 0. Forcing the fluxoid to n = 1 for
all fluxes we can observe the two ends of each topological re-
gion, each of them characterized by a mJ = 0, kz = 0 gap
closing and reopening. In the first lobe only one of the ends
is visible for each topological region, as the fluxoid number
changes abruptly with Φ at the edges of the LP lobes.

then we could observe the topological phase transitions
associated to the other two solutions. This is what we
show in Fig. 6 for a n = 1 fluxoid. Those metastable
topological transitions are situated precisely where our
analytical model predicts them to be. Of course, this
is in general not an experimentally achievable situation
because it is energetically favourable to change the flux-
oid number at the edges of the LP lobes, i.e., at half
integer values of the flux quantum. However, it is very
interesting to understand that the abrupt appearance of
Majorana zero bias peaks at the edges of odd lobes does
not come from a topological phase transition, but it is a
consequence of first order magnetic Landau transitions.

IV. TUBULAR-CORE NANOWIRE

A. Model

Now that we have observed how SOC affects the sim-
plest hollow-core model, we undo some approximations
to get it closer to reality. Instead of an extremely thin
shell with just one TB radial site and perfect proximity
effect, we consider a tubular wire where the semicon-
ductor has some thickness, as in Fig. 1(d). Therefore,
we cannot neglect the radial kinetic term of the Hamil-
tonian as we did in the previous section. We also in-
troduce the proximity effect by integrating-out the su-
perconducting shell into a self-energy term. There are
several possible ways to do this [38, 39], but we choose
the one used in Ref. 31 as it is more precise and allows
us to define a transparency term τ ∈ [0, 1] for the su-
perconductor/semiconductor interface with direct physi-

cal meaning: 1 is transparent junction, 0 means opaque
junction. This self-energy also lets us consider a different
and finer discretization parameter for the shell, as ≪ a0,
as the Fermi wavelength of Al is much smaller than that
of InAs. Defining tI = −1/2msas

√
as(as + a0)/2, with

ms the effective mass of the superconductor, we have

Σshell(ω) = τt2IGshell(ω,∆), (17)

where Gshell is the Greens function at the first site of the
semi-infinite chain of rings that form the superconduct-
ing shell. For details on how this expression is derived
and discretized, see Ref. 31, Sec. III-A. The inclusion of
this term and a thick semiconductor does not affect the
decomposition in mJ modes neither the rotation to elim-
inate angular dependence, so the effective Hamiltonian
of the system reads

H̃BdG =

[(
mJ − 1

2σz − 1
2nτz + eAφ(r)rτz

)2
2m∗r2

+
k2z + p2r
2m∗

+ U0 −
α

r

(
mJ − 1

2
σz −

1

2
nτz + eAφ(r)rτz

)
σz

+ αkzσy] τz

+Σshell(0).

(18)

Notice that we have substituted µ → −U0 to set the
conduction band electrostatic potential. For this section,
we will take it as radially constant.

B. LDOS: from hollow to solid-core

We now perform several TB calculations for this
Hamiltonian as we did in the previous section. We al-
low the radial coordinate to expand between Raxis and
Rcore = Rshell = 70nm, giving thus a finite thickness
to the semiconductor. The 8 simulations of the LDOS
as a function of the magnetic flux performed are shown
in Fig. 7. As we can no longer use the phase diagram
obtained before, we have settled some criteria to choose
the parameters: (1) only 7 mJ modes allowed in the first
lobe for α = 0, (2) Topological region visible in the first
lobe for all radii studied and (3) 10 radial sites for all
simulations. These conditions could lead to other con-
figurations than those used, but the qualitative features
do not change. Since this tubular systems with constant
potential are not experimentally doable as presented in
this section, we have not considered if the concrete values
chosen for U0 and α are realistic or not.
For Raxis = 69nm, panel (b), we find a very similar

situation to the hollow-core. The only significant differ-
ence is the clear definition of the gap edge in the shape
of a dome due to the better implementation of the prox-
imity effect we use in this model. CdGM analog states
are repealed from it, specially at the center of each lobe,
causing the degeneracy point to shift to a lower energy.
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(b) (c)

(d) (e) (f)

(g) (h) (i)

(a)

Figure 7. LDOS at the end of semi-infinite tubular nanowires with different thickness in the topological regime.
Using ∆0 = 0.23meV, m∗ = 0.023, ms = 1, γ = 2 and Rcore = Rshell = 70nm, we have chosen the parameters shown in panel
(a) so that there are 7 mJ subbands in the first lobe contributing to the LDOS with α = 0. We set α = 370meVnm so there
is a topological region in all simulations. Discretization parameters as = 0.01nm and a0 are chosen so that there are always
10 radial sites. In these simulations we model the superconducting proximity effect with a frequency-dependent self energy (in
contrast to the zero-energy approximation used in Fig. 5. In this way, the parent superconductor gap edge is more defined and
all CdGM analog features remain below the parent gap. (b) For Raxis ≈ Rcore we obtain essentially the same behaviour as in
the previous section (see Fig. 5), but the degeneracy point has shifted to a lower energy due to the frequency-dependent self
energy. Moreover, the introduction of a strong SOC increases the effective doping of the nanowire and many more mJ modes
to contribute to the LDOS. (c-e) As we increase the thickness of the semiconductor tube, Rcore −Raxis, the degeneracy point
shifts to larger magnetic fluxes within each lobe (faster the larger n), even disappearing below the next lobe. The CdGM-Van
Hove states get correspondingly skewed towards larger fluxes. The system gap (in black) that is mostly localized below the
degeneracy point also shifts to the right. The topological phase transitions in the first lobe are also displaced to larger fluxes,
up to the point that the right ZBP disappears while the left one extends more throughout the first lobe. Note that in (e)
the gap in the first lobe disappears. (f-i) The topological phase transitions are no longer visible and the left ZBP extends
throughout the whole first lobe. In the solid-core limit, (i), there is no topological gap whatsoever separating the Majorana
zero mode from the continuum of subgap LDOS coming from mJ ̸= 0 CdGM analog states.

The SOC parameter has allowed many more mJ modes
to contribute, reducing the true gap of the system to a
thin rhomb in the center of the lobe. The borders of
this figure are in the mJ = 0 mode, and we deduce that
they are associated to kz = 0 since they mark topological
transitions. The degeneracy point is slightly shifted from
the center of the lobe, causing the Majorana ZBPs to be
slightly asymmetric. This shift is greater in the second
lobe, but non-existent in the zeroth one.

As we increase the thickness of the semiconductor in
panel (c), with Raxis = 60nm, the shift of the degener-
acy point is much more noticeable and the lobes stop to
be periodically repeated. Eventually, for Raxis = 40nm,
panel (d to e), the degeneracy point is outside the first

lobe, in a metastable region with fixed fluxoid for all
fluxes. In the hollow-core model, we showed that the de-
generacy point appears for integer fluxes. However, the
wave functions are now allowed to exist in a region be-
tween Raxis and Rcore, the effective magnetic flux they
experience is lowered with respect to that of the super-
conducting shell. This causes the degeneracy point to
shift towards higher magnetic fields. Approximately, the
flux at which we find the degeneracy point Φdp is for the
first lobe [31].

Φdp

Φ0
=

R2
LP

R2
av

, (19)

where RLP = (Rcore + Rshell)/2 and Rav = (Raxis +
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Rcore)/2.
In panels (b) to (i), we have seen that the left ZBP as-

sociated to a MBS increases its length following the shift
of the degeneracy point. This is easily understandable,
as the CdGM-Van Hove state to which the topological
transition is associated is affected by the change of effec-
tive flux like every other in-gap state. It is remarkable
that for panels (h) to (i) we are not able to observe the
topological transition. This situation is pretty similar to
the one shown in Fig. 6, with the exception that now all
topological transitions are metastable. By manual explo-
ration of the parameter set, we have observed that for
the solid-core with constant electrostatic potential the
topological region is huge in the metastable fixed fluxoid
regime, so, to see the topological transition inside the
stable region requires fine-tuning.

While for some values of Raxis the ZBP of the MBS is
located over a true gap, at least for some fluxes (see panel
(g)), for others it is fully located over a quasi-continuum
of CdGM analogs. Of course, the topological gap is still
a true gap for the mJ = 0 mode in all cases.
Focusing now on the second lobe, the shift of the degen-

eracy point as we lower Raxis is more pronounced, loosing
even the true gap of the system for Raxis = 50nm (panel
(d)). In some cases (panels e,f and i), we also notice that,
while most CdGM-Van Hove states behave similarly to
those in the first and zeroth lobe (but covering the whole
lobe), a pair of those states associated to mJ = ±1/2
is different, their curvature does not resemble the others
We are not even able to see their crossing at 0 energy as
that region is barely populated on their respective mode
LDOS. This special behavior ofmJ = ±1/2 is not present
for all other radii.

Finally, the zeroth lobe does not show anything inter-
esting for none of the cases. Its CdGM analog states get
closer to the dome as we augment the transparency of
the junction (behavior that of course repeats in all other
lobes). Apart from that, it is not affected by the increase
of thickness.

V. SOLID-CORE NANOWIRE

A. Model

To obtain what we call a solid-core nanowire, it is a
priori enough to set Raxis = 0 in the system we used in
the previous section. However, a good model has to take
in account the mismatch between the work functions of
the semiconductor and the superconductor. This pro-
duces an ohmic-type semiconductor band bending at the
interface, so the electrostatic potential of the semicon-
ductors conduction band cannot be considered constant,
but dome-like [40]. In consequence, a quantum well is
created at the interface where we find a charge accumu-
lation, as schematically depicted in Fig. 8. The system,
specially its LDOS, resembles more one of the tubular
models with finite Raxis studied in the previous section

0 Rcore Rshell

Ushell

Umin

EF

Umax

SM SC
Quantum well

Figure 8. Sketch of the electrostatic potential profile
used for the realistic solid-core nanowire model. The
work function difference between the semiconductor and the
superconductor produces a semiconductor conduction-band
bending close to InAs/Al interface. It has a dome-like ra-
dial profile with maximum value at the center, Umax, and
minimum value at the super- conductor/semiconductor inter-
face, Umin, that typically lies below the Fermi level, see blue
curve. The conduction band bottom of the superconductor
has a much larger negative energy, |Ushell| ≫ |Umax|. Due
to the velocity mismatch between both materials, a quantum
well forms close to the interface where the charge accumu-
lates, creating as a result an effective tubular nanowire as
those explored in Sec. IV.

than the proper solid-core with constant potential and
Raxis = 0. The width of this quantum well determines
to which of those models the system is “equivalent”, the
greater width, the greater the thickness. We take that
the potential dome profile is [31]

U(r) = Umin + (Umax − Umin)

(
r

Rcore

)3

, (20)

as for Al/InAs, Ushell ≫ Umax. This also has an effect
on the SOC, as it is now radial dependent. In a typical
8-band model [41, 42]

α → α(r) = α0
dU(r)

dr
, (21)

with the prefactor

α0 =
P 2

3

[
1

∆2
g

− 1

(∆s +∆g)2

]
, (22)

where, for InAs, we use the Kane parameter P =
919.7meVnm, the semiconductor gap ∆g = 417meV and
the split-off gap ∆s = 390meV, obtaining α0 = 1.19nm2.
Again, this does not affect any of the symmetry consid-
erations we used to simplify the effective Hamiltonian, so
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we have

H̃BdG =

[(
mJ − 1

2σz − 1
2nτz + eAφ(r)rτz

)2
2m∗r2

+
k2z + p2R
2m∗

+ U(r)− α(r)

r

(
mJ − 1

2
σz −

1

2
nτz + eAφ(r)rτz

)
σz

+ α(r)kzσy] τz

+Σshell(0),

(23)

where the only change with respect to (18) is the in-
troduction of the radial dependence in the potential,
U0 → U(r) and the Rashba term α → α(r).

B. Local density of states

As we have done in the previous sections, we simu-
late the LDOS at the end of the wire for three different
configurations shown in Fig. 9. For the nominal value
of α0 obtained through (22) we need to carefully fine-
tune the potential profile in order to find ZBPs. Thus,
for the sake of clarity, we have opted to use an order
of magnitude higher value of α0 to illustrate the topo-
logical regime. Comparing it with the non-topological
one, panels (b) vs (a), we observe that the only qualita-
tive difference is the emergence of the Majorana ZBPs.
Specifically, only the mJ = 0 of odd LP lobes is signifi-
cantly affected by the apparition of topology, as pictured
in panels (d) and (e). All other CdGM analogs, both
with integer and half-integer mJ , barely undergo quan-
titative changes. This outcome was already predicted in
the oversimplified model of Sec. III. For completeness, in
this section we have simulated up to the third LP lobe to
point out that topology is also present in all odd lobes.

The introduction of a dome-profile potential spatially
creates a higher density of charge in a ring region more
or less close to the interface and thin depending on its ex-
act shape. Thus, a solid-core with such potential should
in some way resemble a tubular model with a given in-
ner radius, as long as all other parameters remain the
same or equivalent. However, in our tubular Hamilto-
nian we used a constant Rashba term, not radially de-
pendent. In consequence, we cannot establish a direct
relation between the models. Yet, as we have just ex-
plained, the effect of SOC is mainly introduced in the
mJ = 0 mode and, what is more, barely affects the posi-
tion of the degeneracy point. Hence, a visual comparison
between Figs. 9(a) and 7(d-e) allows as to say that our
solid-core dome profile model resembles a tubular model
with Raxis ∼ 40− 50nm. There exists nevertheless a sig-
nificant difference in the topological regime (Fig. 9(b)),
as in a tubular model with such a thickness it has been
impossible to find a Majorana ZBP that extends through-
out the full lobe. On the other hand, we have had the
opposite problem in the solid-core dome-profile model,
where to find a topological transition visible inside the
first lobe we require fine-tuning of the potential.

Additionally, in Fig. 9(c,f), we have added a finite
thickness to the superconducting shell and a Zeeman po-
tential to the Hamiltonian,

Vz =
1

2
gµBBσz =

1

2
gµB

Φ

πR2
LP

σz, (24)

with µB the Bohr magneton and g the Landé g factor.
These up to now ignored effects only further shift the
degeneracy point in flux, but otherwise have a small effect
on the wire’s spectrum.

VI. CONCLUSIONS

In this master thesis, we have studied the effect of
the SOC in full-shell Majorana nanowires from analyt-
ical calculations and from numerical simulations of the
bandstructure and the LDOS. We have used a cylindrical
approximation for the hybrid nanowire and three differ-
ent models of increasing complexity. Starting from the
simplest hollow-core nanowire approximation, we have
decomposed the Hamiltonian in generalized angular mo-
mentum subbands, where mJ is a good quantum num-
ber, to get rid of the angular dependence. In the first
approach, that can be solved analytically, the semicon-
ductor is assumed to have negligible thickness and be
concentrated at the superconductor/semiconductor in-
terface. Then, we allow for the semiconductor to acquire
a certain thickness, in what we have called the tubular
model. Finally, we study a solid-core nanowire where we
take in account the mismatch of Fermi energies between
the metallic shell and the semiconductor core through a
dome-profile electrostatic potential. The superconduct-
ing proximity effect of the shell on the core is taken into
account approximately by integrating-out the supercon-
ductor and introducing its effect as a self-energy term at
the boundary of the semiconductor. We now discuss the
general results and conclusions of the three approaches.
Firstly, in Sec. III, we have analytically observed

the most important effects of the SOC in the hollow-
core nanowire. Studying the bandstructure (for simplic-
ity without LP gap modulation), we have shown how
α breaks the subband degeneracy, but barely shifts in
energy most of the subbands, specially their minimum
points. These points are of special interest, since they
generate Van Hove singularity peaks in the LDOS at the
end of a semi-infinite wire that we call CdGM analog
states. We have also approximated these states in the
LDOS by analytically calculating all band minima as a
function of the flux. By doing so, we conclude that the
most dispersing angular momentum mode with flux is
mJ = 0, as finite mJ modes are essentially dispersionless
for high enough α. This was expected, as the topologi-
cal phase transition of the system necessarily occurs by
a zero energy crossing with flux of the CdGM analog
state associated to mJ = 0 and kz = 0, as we have also
explored. From these calculations, we have obtained a
topological phase diagram of the system and the range
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Figure 9. LDOS as a function of the magnetic flux at the end of a semi-infinite solid-core nanowire with a
realistic radial dome-profile electrostatic potential. Upper row: total LDOSdisplaying half of the n = 0 lobe, and
n = 1, 2, 3 LP lobes. Lower row: LDOS of the lowest-energy subband, which corresponds to mJ = 0 in odd lobes and mJ = 1/2
in even ones. The potential is as in Eq. (20) with Umin = −70meV and Umax = 0meV. (a,b) The only qualitative difference
between the case without (a) and with (b) SOC is the emergence of a ZBP through the first and third lobes. The behavior of the
CdGM-Van Hove states does not change significantly. (d,e) Focusing only on the mJ = 0 mode, the inclusion of SOC changes
dramatically the LDOS due to the appearance of the ZBP. (c,f) Introducing a realistic Rshell (to simulate a superconducting
shell thickness) and a Zeeman parameter g shifts the degeneracy point to larger flux values. This reduces the shifted gap and
skews the CdGM analog states, including the Majorana zero mode. Comparing (b) with Fig. 7 we observe that the LDOS is
pretty similar to that of a tubular model with Raxis ∼ 40− 50nm. Parameters not mentioned are as in Fig. 7.

in flux of the topological region for any set of parame-
ters. Including the LP effect, we observe that it allows
to obtain topology for smaller values of the SOC param-
eter and the chemical potential. The Majorana ZBP in
the hollow-core approximation is typically present only
at the edges of the odd LP lobes. To have it expand
all across the odd lobe, very high values of α and µ are
required. Then, we have computed the LDOS as a func-
tion of the magnetic flux at the edge of the nanwoire,
in a non-destructive LP regime, discretizing the system
into a TB Hamiltonian for several values of α, to confirm
our analytical predictions. We have observed symmetri-
cal ZBPs at the edges of the first lobe according to the
phase diagram, with topological transitions at the zero-
energy crossings of the mJ = 0, kz = 0 subgap state,
and first order magnetic transitions at the lobe edges.
We have observed a degeneracy point of all the CdGM
analogs at the center of each lobe and with energy ∆0.
We have also simulated the LDOS for a wide range of the
magnetic flux but artificially fixing the fluxoid to n = 1.
In this way, we have been able to examine metastable
regions of the flux where we have found the other pair of
analytically predicted topological phase transitions asso-
ciated to the Majorana ZBPs that appear at the edges of
the first lobe.

Secondly, in Sec. IV, we have consider a more realistic
scenario where the semiconductor has a finite thickness.
We have also checked the effects of using a self-energy

to introduce the proximity effect. The superconduct-
ing gap edge gets clearly defined in the LDOS and all
subgap states remain at energies below the parent gap.
The wire’s finite thickness results in a displacement of
the degeneracy point within each lobe to larger values
of |Φ|. For the extremely thin hollow-core, it is situ-
ated exactly at integer normalized fluxes, but for tubular
ones the degeneracy point shifts with the thickness. The
shift is proportional to the fluxoid number of the difrent
lobes, being the zeroth lobe unaffected, and in conse-
quence breaking the symmetry around the center of each
lobe. The degeneracy points can even be displaced to
metastable regions of the flux, i.e., away form the LP
lobes, effectively loosing them from the LDOS, but their
effects are still observable over the subgap states, as they
acquire a skeweness towards larger values of flux. The
effective wire’s gap (that is maximum below the degener-
acy points), also gets shifted to the LP lobe edges, disap-
pearing for good for sufficient tube thickness. We have
observed that the SOC qualitatively affects the system
in the same way as with the previous model, but in this
case the ZBPs extends to larger flux values as the degen-
eracy point shifts with semiconductor thickness. In the
solid-core limit, with a radially constant electrostatic po-
tential (constant µ), the ZBPs associated to the end MBS
expand throughout the whole odd lobes. In order to be
able to see topology for all radii studied, we have used
a very large SOC parameter, but for larger thicknesses,
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smaller values of α are needed to observe Majorana zero
modes. The Majorana ZBP has a minigap for themJ = 0
LDOS, however, the complete LDOS does not typically
present a topological minigap between the zero energy
mode and the continuum of states produced by the other
mJ modes.

Thirdly, in Sec. V we have explored a more real-
istic model of a solid-core nanowire in which we have
set a radial dome-profile electrostatic potential for the
conduction band bottom of the semiconductor that in-
duces charge accumulation close to the core/shell inter-
face, leading to results that can be compared to a tubular
model with a certain semiconductor thickness. We have
illustrated that the main effect of the topological regime
is the appearance of a Majorana ZBP in the mJ = 0
mode, while all other CdGM-Van Hove states remain
qualitatively the same, specially the position in magnetic
flux of the degeneracy point. The degeneracy point flux
in turn allows to indentify an equivalent tubular model
for the description of the hybrid nanowire. However, the
behavior of the ZBPs is not the same as in the tubular
model, as it expands throughout all the odd LP lobe. In
the corresponding tubular model, a topological transition
is always visible inside the lobe. We have also added a fi-
nite thickness to the superconductor and switched on the
Zeeman effect in order to demonstrate that their only ef-
fect is further shifting the degeneracy point in flux, with
no other relevant qualitative consequence.

In conclusion, we have demonstrated that the SOC
does not significantly change the behavior of the CdGM
analog states, except for those associated to the mJ = 0
subband. This is specially true for the Van Hove singu-
larity at kz = 0, that changes dramatically with SOC and
drives the topological phase transition of the system. For
a realistic full-shell nanowire with a dome-profile electro-
static potential, the degeneracy point shifts with respect
to the lobe center (for all n ̸= 0 LP lobes) and it even dis-
appears from the visible LP flux extension. This creates
a shifted, small gap if present, and it skews the CdGM-
Van Hove singularities towards larger fluxes within each

lobe, the more the larger the fluxoid number n. In the
topological phase, the MBS ZBPs that appear at the odd
lobe edges in the hollow-core approximation, extends over
wider flux ranges. In particular, for positive fluxes, the
right ZBP disappears form the odd lobes, while the left
one extends towards the other side of the lobe as the
semiconductor charge-density distribution acquires a fi-
nite thickness. In general, for what we consider are re-
alistic parameters of the dome profile, the ZBP extends
throughout all the odd LP lobes. It should be noted
nevertheless that the precise shape of this electrostatic
potential is unknown and cannot be access directly with
an experiment. Actually, the comparison of experimental
results of tunneling spectroscopy with our LDOS simula-
tions could be used to access microscopic parameters of
these wires in an indirect way. Let us also notice that in
realistic solid-core nanowires and considering the cylin-
drical approximation we have used for this wires, there
is typically no topological minigap separating the Ma-
jorana zero mode from the continuum of states present
inside the LP gap due to mJ ̸= 0 CdGM analog states.
This is detrimental for the use of these states as topo-
logical qubits. Nevertheless, it has been suggested that
a small quantity of symmetry breaking or disorder could
open small topological minigaps [15, 19].

For the future, there is still more work to do in order to
better describe the realistic experimental scenario, such
as considering the hexagonal shape of the nanowire cross-
section, including the superconductor at the TB level, in-
cluding disorder, both in the transverse and longitudinal
directions, considering finite nanowire length effects and,
finally, computing the differential conductance dI/dV to
truly compare to experiments.

METHODS

All our tight-binding simulations have been computed
using Quantica.jl [43].
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E. Prada, Theory of caroli-de gennes-matricon analogs in
full-shell nanowires (2022).

[32] R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma,
Search for majorana fermions in multiband semiconduct-
ing nanowires, Phys. Rev. Lett. 106, 127001 (2011).

[33] M. Valentini, M. Borovkov, E. Prada, S. Marti-Sanchez,
M. Botifoll, A. Hofmann, J. Arbiol, R. Aguado, P. San-
Jose, and G. Katsaros, Majorana-like coulomb spec-
troscopy in the absence of zero bias peaks (2022).

[34] F. London, Superfluids, Vol. 1 (Wiley, New York, 1950).
[35] W. Meissner and R. Ochsenfeld, Ein neuer effekt bei ein-

tritt der supraleitfähigkeit, Naturwissenschaften 21, 787
(1933).

[36] H. Essén and M. C. N. Fiolhais, Meissner effect, diamag-
netism, and classical physics—a review, Am. J. Phys. 80,
164 (2012), https://doi.org/10.1119/1.3662027.

[37] S. Sanvito, C. J. Lambert, J. H. Jefferson, and
A. M. Bratkovsky, General green’s-function formalism for
transport calculations with spd hamiltonians and giant
magnetoresistance in co- and ni-based magnetic multi-
layers, Phys. Rev. B 59, 11936 (1999).

[38] J. C. Cuevas, A. Mart́ın-Rodero, and A. L. Yeyati, Hamil-
tonian approach to the transport properties of supercon-
ducting quantum point contacts, Phys. Rev. B 54, 7366
(1996).

[39] T. D. Stanescu and S. Das Sarma, Proximity-induced
low-energy renormalization in hybrid semiconductor-
superconductor majorana structures, Phys. Rev. B 96,
014510 (2017).

[40] A. E. G. Mikkelsen, P. Kotetes, P. Krogstrup,
and K. Flensberg, Hybridization at superconductor-
semiconductor interfaces, Phys. Rev. X 8, 031040 (2018).

[41] R. Winkler, S. Papadakis,
E. De Poortere, and M. Shayegan,
Spin-orbit coupling effects in two-dimensional electron and hole systems,
Vol. 191 (Springer, 2003).

[42] S. D. Escribano, A. L. Yeyati, and E. Prada, Improved
effective equation for the rashba spin-orbit coupling in
semiconductor nanowires, Phys. Rev. Research 2, 033264
(2020).

[43] P. San-Jose, Quantica.jl: a quantum lattice simulation
library in the Julia language (2021).

https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1103/PhysRevLett.119.136803
https://doi.org/10.1103/PhysRevLett.119.136803
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1126/science.aav3392
https://doi.org/10.1103/PhysRevB.101.060507
https://doi.org/10.1103/PhysRevLett.125.156804
https://doi.org/10.1103/PhysRevLett.125.156804
https://doi.org/10.1038/s41598-021-97780-9
https://doi.org/10.1038/s41598-021-97780-9
https://doi.org/10.1103/PhysRevResearch.2.023171
https://doi.org/10.1126/science.abf1513
https://doi.org/10.1103/PhysRevLett.9.9
https://doi.org/10.1103/PhysRev.133.A97
https://doi.org/10.1103/PhysRev.133.A97
https://doi.org/10.1126/science.1066144
https://arxiv.org/abs/https://science.sciencemag.org/content/294/5550/2332.full.pdf
https://doi.org/10.1103/PhysRevLett.103.037001
https://doi.org/10.1103/PhysRevLett.103.037001
https://doi.org/10.1103/PhysRevB.82.214514
https://doi.org/10.1103/PhysRevB.82.214514
https://doi.org/https://doi.org/10.1016/0031-9163(64)90375-0
https://doi.org/https://doi.org/10.1016/0031-9163(64)90375-0
https://doi.org/https://doi.org/10.1016/0375-9601(68)90931-6
https://doi.org/https://doi.org/10.1016/0375-9601(68)90931-6
https://doi.org/10.1103/PhysRev.187.556
https://doi.org/10.1103/PhysRev.187.556
https://doi.org/10.48550/ARXIV.2207.07606
https://doi.org/10.48550/ARXIV.2207.07606
https://doi.org/10.1103/PhysRevLett.106.127001
https://doi.org/10.48550/ARXIV.2203.07829
https://doi.org/10.48550/ARXIV.2203.07829
https://doi.org/10.1007/BF01504252
https://doi.org/10.1007/BF01504252
https://doi.org/10.1119/1.3662027
https://doi.org/10.1119/1.3662027
https://arxiv.org/abs/https://doi.org/10.1119/1.3662027
https://doi.org/10.1103/PhysRevB.59.11936
https://doi.org/10.1103/PhysRevB.54.7366
https://doi.org/10.1103/PhysRevB.54.7366
https://doi.org/10.1103/PhysRevB.96.014510
https://doi.org/10.1103/PhysRevB.96.014510
https://doi.org/10.1103/PhysRevX.8.031040
https://doi.org/10.1103/PhysRevResearch.2.033264
https://doi.org/10.1103/PhysRevResearch.2.033264
https://doi.org/10.5281/zenodo.4762964
https://doi.org/10.5281/zenodo.4762964

	Topological phase and Majorana zero modes in full-shell nanowires  Fase topológica y modos de Majorana en hilos híbridos encapsulados
	Introduction
	The Little-Parks effect
	Hollow-core nanowire
	Model
	Bogoliuvov-de Gennes Hamiltonian

	Van Hove singularities and phase diagram
	Local density of states
	A short trip under the carpet


	Tubular-core nanowire
	Model
	LDOS: from hollow to solid-core

	Solid-Core nanowire
	Model
	Local density of states

	Conclusions
	Methods
	References


